A huge amount of studies highlighted the importance of high ascorbic acid (AA) content in ozone tolerance, yet the relationship between them appears more complex than a simple direct correlation. Sometimes the connection is clear, for example, two Arabidopsis mutants defective in the main AA biosynthetic pathway (vtc mutants) were identified by means of their ozone sensitivity. However, some low-AA containing mutants are relatively tolerant, suggesting that AA location/availability could be more relevant than total content. A clear distinction should also be made between ozone tolerance obtained when AA content is increased by experimental supplementation (exogenous AA), and the physiological role of plant-synthesized AA (endogenous AA), whose amount is apparently subjected to tight regulation. Recent findings about the role of AA in signal transduction and epigenetic regulation of gene expression open new routes to further research.
Ascorbic acid and ozone: Novel perspectives to explain an elusive relationship / Bellini, E.; De Tullio, M. C.. - In: PLANTS. - ISSN 2223-7747. - 8:5(2019). [10.3390/plants8050122]
Ascorbic acid and ozone: Novel perspectives to explain an elusive relationship
Bellini E.Primo
;
2019
Abstract
A huge amount of studies highlighted the importance of high ascorbic acid (AA) content in ozone tolerance, yet the relationship between them appears more complex than a simple direct correlation. Sometimes the connection is clear, for example, two Arabidopsis mutants defective in the main AA biosynthetic pathway (vtc mutants) were identified by means of their ozone sensitivity. However, some low-AA containing mutants are relatively tolerant, suggesting that AA location/availability could be more relevant than total content. A clear distinction should also be made between ozone tolerance obtained when AA content is increased by experimental supplementation (exogenous AA), and the physiological role of plant-synthesized AA (endogenous AA), whose amount is apparently subjected to tight regulation. Recent findings about the role of AA in signal transduction and epigenetic regulation of gene expression open new routes to further research.File | Dimensione | Formato | |
---|---|---|---|
Bellini_Ascorbic_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.